676 research outputs found

    The Role of the PAX8/PPARγ Fusion Oncogene in Thyroid Cancer

    Get PDF
    Thyroid cancer is uncommon and exhibits relatively low mortality rates. However, a subset of patients experience inexorable growth, metastatic spread, and mortality. Unfortunately, for these patients, there have been few significant advances in treatment during the last 50 years. While substantial advances have been made in recent years about the molecular genetic events underlying papillary thyroid cancer, the more aggressive follicular thyroid cancer remains poorly understood. The recent discovery of the PAX8/PPARγ translocation in follicular thyroid carcinoma has promoted progress in the role of PPARγ as a tumor suppressor and potential therapeutic target. The PAX8/PPARγ fusion gene appears to be an oncogene. It is most often expressed in follicular carcinomas and exerts a dominant-negative effect on wild-type PPARγ, and stimulates transcription of PAX8-responsive promoters. PPARγ agonists have shown promising results in vitro, although very few studies have been conducted to assess the clinical impact of these agents

    Carotenoporphyrins as selective photodiagnostic agents for tumours.

    Get PDF
    The covalent binding of a carotene moiety to one phenyl ring and meso-tetraphenyl-substituted porphyrins (see Figure 1) efficiently quenches the photosensitising activity of the porphyrin while a relatively large yield of fluorescence emission around 650 nm is retained. Pharmacokinetic studies performed with two carotenoporphyrins (CPs) and the corresponding porphyrins (Ps) in Balb/c mice bearing an MS-2 fibrosarcoma show that the two Ps give a high selectivity of tumour localisation (tumour/peritumoral tissue ratios of dye concentration ranging between c. 30 and 90 at 24 h after injection of 4.2-8.4 mumol kg-1 in a Cremophor emulsion) and photosensitive tumour necrosis upon red light irradiation. For the same injected doses, the two CPs show no tumour-photosensitising activity even though they localise in the tumour in concentrations of the order of 10-40 micrograms g-1 at 24 h with tumour/peritumoral ratios larger than 10. Thus, the fluorescence emitted by these CPs in the tumour can be used for photodiagnostic purposes with no risk of skin photosensitisation. However, this approach is presently limited by the large accumulation and prolonged retention of the CPs in the liver and spleen

    A generator of peroxynitrite activatable with red light

    Get PDF
    The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative therapeutic modalities. Among ROS and RNS, peroxynitrite (ONOO(−)) plays a dominant role in chemistry and biology in view of its potent oxidizing power and cytotoxic action. We have designed and synthesized a molecular hybrid based on benzophenothiazine as a red light-harvesting antenna joined to an N-nitroso appendage through a flexible spacer. Single photon red light excitation of this molecular construct triggers the release of nitric oxide (˙NO) and simultaneously produces superoxide anions (O(2)˙(−)). The diffusion-controlled reaction between these two radical species generates ONOO(−), as confirmed by the use of fluorescein-boronate as a highly selective chemical probe. Besides, the red fluorescence of the hybrid allows its tracking in different types of cancer cells where it is well-tolerated in the dark but induces remarkable cell mortality under irradiation with red light in a very low concentration range, with very low light doses (ca. 1 J cm(−2)). This ONOO(−) generator activatable by highly biocompatible and tissue penetrating single photon red light can open up intriguing prospects in biomedical research, where precise and spatiotemporally controlled concentrations of ONOO(−) are required

    Laser-induced fluorescence studies of the biodistribution of carotenoporphyrins in mice.

    Get PDF
    The biodistribution of two recently developed tumour markers, trimethylated (CP(Me)3) and trimethoxylated (CP(OMe)3) carotenoporphyrin, was investigated by means of laser-induced fluorescence (LIF) after i.v. injection into 38 tumour-bearing (MS-2 fibrosarcoma) female Balb/c mice. At 3, 24, 48 or 96 h after administration, the carotenoporphyrin fluorescence was measured in tumoral and peritumoral tissue, as well as in the abdominal, thoracic and cranial cavities. The fluorescence was induced by a nitrogen laser-pumped dye laser, emitting light at 425 nm, and analysed by a polychromator equipped with an image-intensified CCD camera. The fluorescence was evaluated at 490, 655 and 720 nm: the second and third wavelengths represent the carotenoporphyrin (CP)-related peaks, whereas the first one is close to the peak of the tissue autofluorescence. The tumour and the liver were the two tissue types showing the strongest carotenoporphyrin-related fluorescence, whereas the cerebral cortex and muscle consistently exhibited weak substance-related fluorescence. In most tissue types, the fluorescence intensities decreased over time. A few exceptions were observed, notably the liver, in which the intensity remained remarkably constant over the time period investigated

    Laser-induced fluorescence in malignant and normal tissue in mice injected with two different carotenoporphyrins.

    Get PDF
    Laser-induced fluorescence (LIF) was used to characterise the localisation of an intravenously administered trimethylated carotenoporphyrin [CP(Me)3] and a trimethoxylated carotenoporphyrin [CP(OMe)3] in an intramuscularly transplanted malignant tumour (MS-2 fibrosarcoma) and healthy muscle in female Balb/c mice, 3, 24, 48 and 96 h post injection. The fluorescence was induced with a dye laser pumped by a nitrogen laser, emitting light at 425 nm. The fluorescence spectra were recorded in the region 455-760 nm using a polychromator equipped with an image-intensified CCD camera. The tumour/peritumoral muscle ratio was about 5:1 for CP(Me)3 and about 6:1 for CP(OMe)3 in terms of the background-free fluorescence intensity, which peaked at about 655 nm. By including the endogenous tissue fluorescence, the contrast was further enhanced by a factor of approximately 2

    Characterization of Polyphosphoesters by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    Get PDF
    FT-ICR mass spectrometry, together with collision-induced dissociation and electron capture dissociation, has been used to characterize the polyphosphoester poly[1,4-bis(hydroxyethyl)terephthalate-alt-ethyloxyphosphate] and its degradation products. Three degradation pathways were elucidated: hydrolysis of the phosphate–[1,4-bis(hydroxyethyl)terephthalate]bonds; hydrolysis of the phosphate–ethoxy bonds; and hydrolysis of the ethyl–terephthalate bonds. The dominant degradation reactions were those that involved the phosphate groups. This work constitutes the first application of mass spectrometry to the characterization of polyphosphoesters and demonstrates the suitability of high mass accuracy FT-ICR mass spectrometry, with CID and ECD, for the structural analysis of polyphosphoesters and their degradation products

    A Study of the PDGF Signaling Pathway with PRISM

    Get PDF
    In this paper, we apply the probabilistic model checker PRISM to the analysis of a biological system -- the Platelet-Derived Growth Factor (PDGF) signaling pathway, demonstrating in detail how this pathway can be analyzed in PRISM. We show that quantitative verification can yield a better understanding of the PDGF signaling pathway.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Mitochondrial contact site and cristae organizing system (MICOS) machinery supports heme biosynthesis by enabling optimal performance of ferrochelatase

    Get PDF
    Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and genetic analyses revealed dynamic association of Hem15 with Mic60, a core component of the mitochondrial contact site and cristae organizing system (MICOS). Loss of MICOS negatively impacts Hem15 activity, affects the size of the Hem15 high-mass complex, and results in accumulation of reactive and potentially toxic tetrapyrrole precursors that may cause oxidative damage. Restoring intermembrane connectivity in MICOS-deficient cells mitigates these cytotoxic effects. These data provide new insights into how heme biosynthetic machinery is organized and regulated, linking mitochondrial architecture-organizing factors to heme homeostasis

    Statistical analysis plan for the Dual mTorc Inhibition in advanCed/recurrent Epithelial ovarian, fallopian tube or primary peritoneal cancer (of clear cell, endometrioid and high-grade serous type, and carcinosarcoma) trial (DICE)

    Get PDF
    Background Treatment for ovarian cancer includes platinum-based chemotherapy, but many women become resistant to chemotherapy, becoming platinum-resistant. Standard of care for these women is weekly paclitaxel chemotherapy, but cancers can often become paclitaxel resistant. TAK228, an investigational dual TORC1/2 inhibitor, is an oral therapy that can be added to standard treatment. The DICE trial is a phase II international multicentre, parallel-group, superiority clinical trial with 1:1, open label randomisation which has the aim of investigating the effectiveness of TAK228 plus weekly paclitaxel. The planned sample size is 124 women (62 per treatment arm) with platinum-resistant ovarian cancer. Objective To outline the planned analyses for DICE in a statistical analysis plan (SAP) before database hard lock and the start of analysis. This ensures that bias is minimised during the analysis phase. Results This SAP provides detailed descriptions of the analysis principles and statistical procedures for analysing primary and secondary outcomes of the trial. The primary outcome is overall progression-free survival (PFS). Secondary outcomes include progression-free survival (PFS) at 24 weeks, overall response rate (ORR), duration of response (DoR), time to progression (TTP), clinical benefit rate (CBR) at 4 months, Cancer Antigen 125 (CA125) response according to Gynaecological Cancer Intergroup (GCIG) criteria, overall survival (OS), safety and tolerability as assessed by adverse events and the quality-of-life questionnaires (EORTC QLQ-C30 and EORTC QLQ-OV28). This detailed description includes significance levels, sensitivity analyses and compliance analysis. Discussion The DICE trial will determine whether the addition of TAK228 to weekly paclitaxel chemotherapy shows a statistically significant improvement to participant’s progression free and overall survival and that the adverse events (AEs) and quality of life (QoL) are not significantly worse than the standard treatment. The study commenced recruitment in September 2018. An interim analysis was performed in early 2021, the results of which advised continuation of the trial. The study recruitment is ongoing and is due to complete by the end of 2021. Trial registration ClinicalTrials.govNCT03648489. Registered on 27 August 201
    corecore